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Coronal energy release by MHD avalanches
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ABSTRACT

Context. A possible key element for large-scale energy release in the solar corona is an MHD kink instability in a single twisted
magnetic flux tube. An initial helical current sheet progressively fragments in a turbulent way into smaller-scale sheets. Dissipation
of these sheets is similar to a nanoflare storm. Since the loop expands in the radial direction during the relaxation process, an unstable
loop can disrupt nearby stable loops and trigger an MHD avalanche.
Aims. Exploratory investigations have been conducted in previous works with relatively simplified loop configurations. Here, we
address a more realistic environment that comprehensively accounts for most of the physical effects involved in a stratified atmosphere,
typical of an active region. The question is whether the avalanche process will be triggered, with what timescales, and how it will
develop, as compared with the original, simpler approach.
Methods. Three-dimensional (3D) MHD simulations describe the interaction of magnetic flux tubes, which have a stratified atmo-
sphere, including chromospheric layers, the thin transition region to the corona, and the related transition from high-β to low-β regions.
The model also includes the effects of thermal conduction and of optically thin radiation.
Results. Our simulations address the case where one flux tube among a few is twisted at the footpoints faster than its neighbours.
We show that this flux tube becomes kink unstable first, in conditions in agreement with those predicted by analytical models.
It rapidly involves nearby stable tubes, instigating significant magnetic reconnection and dissipation of energy as heat. The heating
determines, in turn, the development of chromospheric evaporation, while the temperature rises up to about 107 K, close to microflares
observations.
Conclusions. This work therefore confirms, in more realistic conditions, that avalanches are a viable mechanism for the storing and
release of magnetic energy in plasma confined in closed coronal loops, as a result of photospheric motions.

Key words. plasmas – magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic fields

1. Introduction

The magnetic activity in the solar corona consists of a wide range
of events, reflecting the dynamic nature of the environment. The
role of the magnetic field as the dominant reservoir of energy
that may heat the corona to millions of kelvin is now widely ac-
cepted. Moreover, it is now clear that the coronal heating prob-
lem must address the whole solar atmosphere as a highly cou-
pled system (Parnell and De Moortel 2012): the solar corona
must not be treated as an isolated environment, but as an en-
ergetically open system with continuous interactions with the
underlying layers (i.e. the chromosphere and photosphere). On
the other hand, the nature of the mechanisms that might lead
the magnetic field to supply energy to the corona is still highly
debated. Although several processes have been proposed in re-
cent decades, it is still unclear how they interact to produce the
complex behaviour of the solar atmosphere. For instance, pho-
tospheric observations show a very clumpy magnetic field, orga-
nized into clusters of elemental flux tubes (Gomez et al. 1993).
Above that, the bright corona consists of arch-like magnetic
structures which connect regions with different polarity: coronal
loops (Vaiana et al. 1973; Reale 2014). Loops are, in turn, struc-

tured into thinner magnetic strands which reflect the underlying
granular pattern. Tangling and twisting of the coronal magnetic
strands cannot be avoided, according to photospheric observa-
tions. The field must therefore reconnect in order to prevent an
infinite build-up of stress. This inevitably produces plasma heat-
ing (Parker 1972; Klimchuk 2015). Investigating coronal loops
is of fundamental importance in order to understand key physical
aspects of several heating mechanisms based on magnetic stress.

Coronal loops are generally organised into clusters of thin,
twisted threads (also called strands) following the same col-
lective behaviour. Nevertheless, as coronal loops commonly ex-
hibit strong magnetic fields of the order of 10 G or more (Yang
et al. 2020; Long et al. 2017; Brooks et al. 2021), and the coro-
nal plasma nearly ideal, transport of matter across the field is
strongly inhibited. In other words, the magnetic field prevents the
plasma from directly diffusing outside of the flux tubes. More-
over, since magnetic forces are much stronger than gravity in
the corona, the latter will effectively act only along the field
lines. Tenuous plasma is strongly funnelled along the field lines
and also thermally isolated from the surroundings (Rosner et al.
1978; Vesecky et al. 1979). Coronal loops are anchored to the
underlying chromosphere and, a little further down, to the pho-
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tospheric layer, where the plasma β parameter exceeds unity by
a few orders of magnitude. There, the so-called loop foot-points
are dragged by photospheric plasma motion, which, in turn,
might be highly irregular and turbulent. The typical strength of
the magnetic field in the photosphere is found to be hundreds
of Gauss in active regions and sunspots (Ishikawa et al. 2021).
Higher in the corona, the plasma pressure decreases, the flux
tube progressively expands, and the magnetic field strength de-
creases, while keeping the magnetic flux conserved. The great-
est expansion rate is expected across the thin transition region
separating the chromosphere from the overlying corona (Gabriel
1976). There, the temperature rapidly increases from thousands
to millions of kelvin and, consequently, the pressure scale-height
increases by several orders of magnitude.

The solar corona may be heated both by dissipation of stored
magnetic stresses (DC heating) and by the damping of waves
(AC heating) (Parnell and De Moortel 2012; Zirker 1993). In
particular, DC heating must involve both storage and impul-
sive release of magnetic energy. In solar active regions, the en-
ergy is presumably stored over timescales longer than an Alfvén
time. A reasonable general assumption is that the magnetic field
evolves quasi-statically through a sequence of equilibria, slowly
changing because the coronal footpoints are rigidly line-tied to
the low-beta photospheric plasma. As the coronal field moves
through these equilibria, energy is injected by the motions, and is
then stored. Observations and numerical experiments provide ev-
idence that the evolution of coronal loops is strongly influenced
by the photospheric motions (Chen et al. 2021). The coronal
magnetic field must be driven toward a stressed state, which will
be a non-potential configuration. For instance, footpoint rotation
may lead the magnetic structure to twist and gain magnetic en-
ergy. While magnetic energy is stored, the flux tube could poten-
tially be subject to strong stresses that may eventually trigger fast
magnetohydrodynamic instabilities, such as the kink instability
(Hood et al. 2009) or the tearing mode instability (Del Zanna
et al. 2016), or lead to long-lasting Ohmic heating (Klimchuk
2006). The details of this conversion, for instance whether con-
tinuous or by sequences of pulses (nanoflares), are still under
investigation. Another outstanding issue is the spatial distribu-
tion of the heating, which may reveal a filamentary structure on
coronal loops.

Heating and brightening of coronal loops may occur as a
storm of impulsive events (Klimchuk 2009; Viall and Klimchuk
2011). Such heat pulses may be driven by multiple localized in-
stances of the magnetic field relaxing. The irregular photospheric
motion, as well as a large range of magnetohydrodynamic insta-
bilities, may lead the magnetic structure to develop fast recon-
nection and to produce heat. A very compelling body of evidence
now supports magnetic reconnection as the key element to start
large-scale energy release process, which might dissipate into
a background heating (Hood et al. 2009). Apart from individ-
ual reconnection events in localized current sheets and neutral
points, many sites of reconnection might develop in the complex
and dynamic coronal magnetic field. Energy released by several
localized reconnection events can be predicted by Taylor’s dissi-
pation theory (Taylor 1974), first applied to Reverse Field Pinch
devices in plasma laboratories (Taylor 1986) and then extended
to the coronal environment (Browning and Priest 1986). Accord-
ing to Taylor’s theory, a turbulent, resistive plasma can rapidly
reach a minimum-energy state. During the process, the topology
of the magnetic field changes via reconnection, but the magnetic
helicity is conserved.

In the corona, the magnetic field might become unstable to
resistive modes, as it is slowly forced by photospheric motions to

explore a series of non-linear force-free states. In conditions of
high magnetic stress the field must reconnect and relax towards
a linear force-free state, ∇ × B = αB, with uniform α (Woltjer
1958; Heyvaerts and Priest 1983). In particular, magnetic energy
is found to be released in the corona throughout a widespread
range of events that occur from large (flares, < 1025 J) down
to medium (microflares, < 1022 J) scales (e.g., shown by Priest
2014). It has been suggested that the same mechanism, operating
on even smaller scales, could be responsible for maintaining the
one-million kelvin diffuse corona, through so-called nanoflare
activity (Parker 1988).

Undetectable when first proposed (Parker 1988; Antolin
et al. 2021), observational evidence of such small events, includ-
ing nanoflares, has been growing (Mondal 2021; Vadawale et al.
2021). Solar Orbiter (Müller et al. 2020)’s combination of high-
resolution measurements of the photospheric magnetic field with
the Polarimetric and Helioseismic Imager (PHI; Solanki et al.
2020), together with UV and EUV images from the Extreme Ul-
traviolet Imager (EUI; Rochus et al. 2020) and spectra from the
Spectral Imaging of the Coronal Environment (SPICE; SPICE
Consortium et al. 2020), are able to capture localized reconnec-
tion events down to even smaller scales, the so-called camp-
fires (Berghmans et al. 2021; Zhukov et al. 2021), small and
localized brightenings in a quiet Sun region with length scales
between 400 km and 4000 km and durations between 10 s and
200 s. These coronal events are rooted in the magnetic flux con-
centrations of the chromospheric network.

A possible trigger mechanism for large-scale energy release
(such as solar flares) is the MHD kink instability in a single
twisted magnetic flux strand (Hood and Priest 1979b; Hood
et al. 2009). It typically arises in narrow, strongly twisted mag-
netic tubes and results in the cross-section of the plasma column
moving transversely away from its centre of mass, determin-
ing an irreversible imbalance between outward-directed force
from magnetic pressure and the inward force of magnetic ten-
sion (Priest 2014). A helical current sheet forms and reconnec-
tion can occur. The condition for the instability to occur can be
expressed in terms of a critical amount of twist Φcrit.. Different
studies have predicted the critical twist in different configura-
tions: Φcrit. = 3.3 π for a uniform twisting (Hood and Priest
1979a), Φcrit. = 4.8 π for a localized twisting profile (Mikic
et al. 1990),Φcrit. = 5.15 π for localized, variable twisting profile
(Baty and Heyvaerts 1996). Energy is released after the magnetic
field becomes unstable to ideal MHD modes. At the beginning,
a helical kink develops and grows according to the linear theory
of instability. Afterwards, the initial helical current sheet pro-
gressively fragments, in a turbulent manner, into smaller-scale
sheets. During the onset of instability, a burst of kinetic energy
occurs. Magnetic dissipation occurs throughout the non-linear
phase of the instability. In particular, reconnection events occur
in fine-scale structures like current sheets. Dissipation of these
sheets is similar to a nanoflare storm. At the end, the magnetic
field reaches an energy minimum constrained by conservation
of magnetic helicity, as expected in highly conducting plasmas
(Browning 2003; Browning et al. 2008), among other topologi-
cal constraints (e.g. ?).

Since the loop expands in the radial direction, during the
relaxation process, an unstable loop can disrupt nearby stable
loops (Tam et al. 2015), and can trigger an MHD avalanche
(Hood et al. 2016). For instance, Hood et al. (2016) demon-
strate that an MHD avalanche can occur in a non-potential multi-
threaded coronal loop. They show that a single unstable thread
can trigger the decay of the entire structure. In particular, each
flux tube coalesces with the neighbouring ones and releases dis-
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crete heat bursts. In general, the energy stored by photospheric
motions can be released via viscous and Ohmic dissipation dur-
ing a dynamic relaxation process (Reid et al. 2018), and there-
after through a sequence of impulsive, localized and aperiodic
heating events under the action of continuous photospheric driv-
ing (Reid et al. 2020).

Those earlier works conducted exploratory investigations
with relatively simplified loop configurations, with no gravita-
tional stratification, and with no variation of β with height, and
neglecting thermal conduction and optically thin radiation. Sep-
arately, others have considered the effect of thermal conduction,
but in a purely coronal loop (Botha et al. 2011), and again with-
out stratification in density. In this work, we consider a more
realistic scenario of flux tubes interacting within a stratified at-
mosphere, including chromospheric layers and the thin transi-
tion region to the corona, the associated transition from high-β
to low-β regions, and including thermal conduction and optically
thin radiation (as in Reale et al. 2016). The question is whether
the avalanche process will be triggered, with what timescales,
and how it will develop, as compared with the original, simpli-
fied approach.

In section 2, we present the equations used in our model and
the details for the set-up used in the numerical model. Section 3
treats the theoretical models deployed to corroborate the numer-
ical outcomes and to provide a physical interpretation to the re-
sults. Section 4 discusses the results achieved, concerning the
initial quasi-static evolution of the coronal loops as they twist
under the influence of a slow photospheric motion and the fur-
ther dynamic relaxation via an MHD avalanche. Finally, in sec-
tion 5, we provide a comprehensive interpretation of the results
compared with previous works.

2. The model

The numerical experiment is based on a solar atmosphere model
that consists of a chromospheric layer and a coronal environment
crossed by multiple coronal loop strands. Each strand is mod-
elled as a straightened magnetic flux tube linked to two chromo-
spheric layers at the opposite ends of a box (Fig. 1). The length of
each tube is much longer than its cross-sectional radius. Though
the loop-aligned gravity is that of a curved, untwisted loop, we
neglect other effects of the curvature. In our scenario, the two
(upper and lower) chromospheric layers are the two loop foot-
points and are so distant from each other that they can be as-
sumed independent regions.

The evolution of the plasma and magnetic field in the box
is described by solving the full time-dependent MHD equations
including gravity (for a curved loop), thermal conduction (in-
cluding the effects of heat flux saturation), radiative losses from
an optically thin plasma, and an anomalous magnetic diffusivity.

The equations are solved in Eulerian, conservative form:

∂ρ

∂t
+ ∇ · (ρ v) = 0, (1)

∂(ρ v)
∂t
+ ∇ · (ρ v v) = −∇ · (P I +

B2

8π
I −

B B
8 π

)

(2)
+ ρg,

∂B
∂t
− ∇ × (v × B) = η∇2B, (3)

∂

∂t

(
B2

8π
+

1
2
ρv2 + ρϵ + ρgh

)
+

+ ∇ ·

[
c

4π
E × B +

1
2
ρv2v +

(4)

+
γ

γ − 1
P v + Fc + ρgh v

]
= −Λ(T )nenH + H0,

P = (γ − 1)ρϵ =
2kB

µmH
ρT, (5)

j =
c

4π
∇ × B, (6)

E = −
v
c
× B +

j
σ
, (7)

where t is the time; ρ the mass density; v the plasma veloc-
ity; P the thermal pressure; B the magnetic field; E the elec-
tric field; g the gravity acceleration vector for a curved loop;
I the identity tensor; ϵ the internal energy; j the induced cur-
rent density; η the magnetic diffusivity; σ = c2

4πη the electrical
conductivity; T the temperature; Fc the thermal conductive flux;
Λ(T ) the optically thin radiative losses per unit emission mea-
sure; nH and ne the hydrogen and electron number density, re-
spectively; mH the hydrogen mass density; kB the Boltzmann
constant; µ = 1.265 the mean ionic weight (relative to a proton
and assuming metal abundance of solar values: X (H) ≃ 70.7 %,
Y (He) ≃ 27.4 %, Z (Li − U) ≃ 1.9 %; Anders and Grevesse
1989); and H0 = 4.3 × 10−5 erg cm−3 s−1 a volumetric heating
rate which balances the initial energy losses and is used to keep
the loop initially in thermal equilibrium. As shown in Eq. (5), we
use the ideal gas law as an equation of state.

According to the induction equation (Eq. 3), the magnetic
field soleinodal condition ∇ · B = 0 formally holds at any time t,
provided the initial conditions are well posed (and numerical er-
rors are not taken into account). Ampere’s law in non-relativistic
regime (Eq. 6) gives the current density in terms of the curl of
the magnetic field. In Eq. (6), the displacement current can be ne-
glected provided that the plasma velocity is not relativistic (i.e.
provided v ≪ c). The electric field E is defined by Ohm’s law
in equation (7). From this, the Poynting flux can be decomposed
into three terms:

c
4π

E × B = −
1

4π
B(v · B) +

B2

4π
v +

η

c
j × B. (8)

The first term on the right-hand side will be significant for the
driving as it determines the energy injected in the domain by
the photospheric driver. The second term represents instead the
flow of magnetic energy across the boundaries of the domain.
Finally, the third term is related to Ohmic dissipation and field
line diffusion at the boundaries of the domain.
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Fig. 1. Upper left panel: map of the angular velocity at the bottom of the box. The color scale emphasizes higher angular velocity. The uniform
grid is marked. The two rotating regions have the same radius Rmax. The region on the left has a higher angular velocity (vmax.,left = 1.1× vmax.,right).
Lower left panel: map of average plasma β as function of z at t = 0 s, the solid curve shows the initial temperature along the z axis. Right panel:
3D rendering of the initial magnetic field configuration in the box around the two flux tubes. The green field lines are twisted faster than the purple
ones.

2.1. Thermal conduction, radiative losses and heating

The thermal conductive flux is defined in the equations below.

Fc =
Fsat.

Fsat. + |Fclass.|
Fclass., (9)

Fclass. = −k∥ b̂(b̂ · ∇T ) − k⊥
[
∇T − b̂(b̂ · ∇T )

]
, (10)

Fsat. = 5ϕρc3
iso.. (11)

where, the subscripts ∥ and ⊥ denote the components parallel
and perpendicular to the magnetic field. The thermal conduc-
tion coefficients along and across the field are k∥ = K∥T

5
2 and

k⊥ = K⊥ρ2/(B2T
1
2 ), where K∥ = 9.2×10−7 and K⊥ = 5.4×10−16

(cgs units); ciso. is the isothermal sound speed; ϕ = 0.9 is a di-
mensionless free parameter; b̂ = B/B a unit vector in the direc-
tion of the magnetic field; and Fsat. is the maximum flux magni-
tude in the direction of Fc.

The optically thin radiative losses per unit emission measure
are derived from the CHIANTI v. 7.0 database (Landi and Reale
2013), assuming coronal element abundances (Widing and Feld-
man 1992).

Across the transition region the number density and the
temperature change by three orders of magnitude in less than
100 km. Resolving such rapid variation and steep gradients
would ordinarily require an extremely high spatial resolution and
lead to unfeasible computational times (Bradshaw and Cargill
2013). The Linker–Lionello–Mikić method (Linker et al. 2001;
Lionello et al. 2009; Mikić et al. 2013) allows us artificially
to broaden the transition region without significantly changing
the properties of the loop in the corona, obviating that chal-
lenge. In particular, following the Linker-Lionello–Mikić ap-
proach, we modified the temperature dependence of the parallel

thermal conductivity and radiative emissivity below a tempera-
ture threshold, Tc = 2.5 × 105 K:

k̃∥(T ) =
{

k∥(T ) , T > Tc ,

k∥(Tc) , T < Tc ,
(12)

Λ̃∥(T < Tc) =

Λ∥(T ) , T > Tc ,

Λ∥(T )
(

T
Tc

)5/2
, T < Tc .

(13)

According to Rosner-Tucker-Vaiana scaling laws (Rosner et al.
1978), the volumetric heating rate H0 is sufficient to keep the
corona static with an apex temperature of about 8×105 K and half
length L = 2.5×109 cm. This provides a background atmosphere
that is adopted as initial conditions, according to the hydrostatic
loop model by Serio et al. (1981) and Guarrasi et al. (2014).
That heating rate is not similarly scaled for temperatures below
the cut-off temperature (cf. Johnston et al. 2020)

2.2. Gravity in a curved loop

We assume that the flux tube is circularly curved only in the
corona, and that it is straight in the chromosphere. Thus we con-
sider the gravity of a curved loop in the corona:

g(z) ẑ = g⊙ sin
(
π

z
L

)
ẑ, (14)

where g⊙ =
GM⊙

R2
⊙

is constant; G is the gravitational constant; M⊙
is the solar mass; R⊙ is the solar radius. Note that gravitational
acceleration decreases and becomes zero at the loop apex (z =
0), to account for the loop curvature. Below the corona, gravity
is uniform and vertical.
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2.3. The loop setup

Our computational 3D box contains two flux tubes of length
5 × 109 cm and initial temperature of approximately 106 K (see
lower-left panel of figure 1). Their footpoints are anchored to two
thick, isothermal chromospheric layers, at the top and bottom of
the box. As the plasma β decreases farther from the boundaries,
the magnetic field expands (see Fig. 1). The initial atmosphere is
the result of a preliminary simulation in which we let a box with
a vertical magnetic field relax to an equilibrium condition until
the maximum velocity has reached a value below 10 km s−1, as
described in Guarrasi et al. (2014).

The computational box is a 3D Cartesian grid, −xM < x <
xM , −yM < y < yM , and −zM < z < zM , where xM = 2yM =
8 × 108 cm, yM = 4 × 108 cm, and zM = 3.1 × 109 cm, with a
staggered grid. We adopted the piecewise uniform and stretched
grid sketched in Fig. 1. In particular, in the corona, we consid-
ered a non-uniform grid whose resolution degrades with height.
Instead, to describe the transition region at sufficiently high res-
olution, the cell size there (|z| ≈ 2.4 × 109 cm) decreases to
∆r ∼ ∆z ∼ 3 × 106 cm and remains constant across the chro-
mosphere. The boundary conditions are periodic at x = ±xM and
y = ±yM; and reflective but with reversed sign for the tangen-
tial component of the magnetic field (i.e. equatorial symmetric
boundary conditions) at z = ±zM .

We also performed a second numerical experiment, extend-
ing the domain in the x-direction (xM = 1.5×109 cm) and includ-
ing a third flux tube. The results of this simulation are discussed
in section 5.

2.4. The plasma resistivity

We consider an anomalous plasma resistivity that is switched on
only in the corona and transition region (i.e. above Tcr. = 104 K)
where the magnitude of the current density exceeds a critical
value, as in the following equation (e.g. Hood et al. 2009):

η =

{
η0 |J| ≥ Jcr. and T ≥ Tcr.

0 |J| < Jcr. or T < Tcr.
, (15)

where we assume η0 = 1014 cm−2 s−1 and Jcr. = 250 Fr cm−3 s−1.
The current threshold has been chosen so as to avoid Ohmic
heating before the onset of the instability and to permit the
ideal build-up to the instability. With this assumption, the min-
imum heating rate above threshold is H = η0(4π|Jcr.|/c)2 ≈

0.3 erg cm−3 s−1. Below the critical current, a minimum numeri-
cal resistivity is inevitably present, but it does not contribute any
heating during the simulation.

2.5. Loop twisting

We tested the evolution of a coronal loop under the effects of a
footpoint rotation. In particular, both strands are driven by coher-
ent photospheric rotations which switch sign from one footpoint
to the other. Rotation at the threads’ footpoints induces a twist-
ing of the magnetic field lines. As flux tube torsion increases,
the current density is amplified. Once the conditions for a kink
instability are reached, a strong current sheet forms and the crit-
ical current is exceeded, triggering magnetic diffusion and heat-
ing via Ohmic dissipation. The angular velocity ω(r) is that of
a rigid body around the central axis, i.e., the angular speed is
constant in an inner circle and then decreases linearly in an outer

annulus (Reale et al. 2016):

ω = ω0 ×


1 r < rmax.

(2rmax. − r)/rmax. rmax. < r < 2rmax.

0 r > 2rmax.

, (16)

where ω0 = vmax./rmax., vmax. is the maximum tangential veloc-
ity (vϕ = ωr) and rmax. is the characteristic radius of the rotation.
In this specific case, the central loop is driven at a speed which
is 10% higher than the lateral ones and is equal to 1.1 km s−1.
The maximum velocity achieved by twisting is always smaller
than the minimum Alfvén velocity vA = B/

√
4πρ in the do-

main. Moreover, the characteristic velocity (ω0 rmax.) is high
enough to avoid field line slippage at the photospheric bound-
aries caused by numerical diffusion. The choice of a mirror-
symmetric photospheric driver does not make the further sys-
tem evolution to lack of generality: the relatively high Alfvén
velocities lead coronal loops to maintain a very high degree of
symmetry even when they are subjected to asymmetric photo-
spheric motions for a long time (Cozzo et al. 2023). The rmax.
parameter is set to 1200 km for both loops (see top-left panel of
figure 1). For many recent simulations of coronal loops subject to
photospheric driving, a significant challenge has been attaining
realistic driving speeds, with this need to drive quickly enough
to prevent field line slippage requiring modelled velocities much
faster than those observed. However, with velocities of the order
of 1 km s−1, we approach typical photospheric velocity patterns
(Gizon and Birch 2005; Rieutord and Rincon 2010), benefiting
from growing computational resources.

2.6. Numerical computation

The calculations are performed using the PLUTO code
(Mignone et al. 2007, 2012), a modular, Godunov-type code for
astrophysical plasmas. The code provides an algorithmic, mod-
ular multiphysics environment, particularly oriented toward the
treatment of astrophysical flows in the presence of discontinu-
ities as in the case treated here. Numerical integration of the
conservation laws (Eqs. 1–4) is achieved through high-resolution
shock-capturing (HRSC) schemes using the finite volume (FV)
formalism where volume averages evolve in time (Mignone et al.
2007). The code is designed to make efficient use of massive
parallel computers using the message passing interface (MPI) li-
brary for interprocessor communications. The MHD equations
are solved using the MHD module available in PLUTO, config-
ured to compute intercell fluxes with the Harten-Lax-Van Leer
approximate Riemann solver (Roe 1986), while second order
accuracy in time is achieved using a Runge-Kutta scheme. A
Van Leer limiter (Sweby 1985) for the primitive variables is
used. The evolution of the magnetic field is carried out adopt-
ing the constrained transport approach (Balsara and Spicer 1999)
that maintains the solenoidal condition (∇ · B = 0) at ma-
chine accuracy. The PLUTO code includes optically thin radia-
tive losses in a fractional step formalism, which preserves the
second-order time accuracy, since the advection and source steps
are at least second-order accurate; the radiative losses, Λ, values
are computed at the temperature of interest using a table look-
up/interpolation method. Thermal conduction is treated sepa-
rately from advection terms through operator splitting. In partic-
ular, we adopted the super-time-stepping technique (Alexiades
et al. 1996), which has proved to be very effective at speeding
up explicit time-stepping schemes for parabolic problems. This
approach is crucial when high values of plasma temperature are
reached (e.g., during flares) since explicit schemes are subject to
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a rather restrictive stability condition (namely, ∆t ≤ (∆x)2/(2α),
where α is the maximum diffusion coefficient). This means the
thermal conduction timescale, τcond., is shorter than the dynami-
cal one, τdyn. (Orlando et al. 2005, 2008).

3. Basic theory

3.1. Twisting with expanding magnetic tube

Simple analytical models can predict the initial, steady state evo-
lution of the system provided that certain assumptions be satis-
fied (Hood and Priest 1979a; Browning and Hood 1989). Each
loop is modelled as a cylindrically symmetric magnetic structure
not interacting with the neighbouring ones. The initial magnetic
field is not uniform: magnetic field lines expand from the pho-
tospheric boundaries (where B ≈ 300 G) to the upper corona
(where B ≈ 10 G). As the field lines expand, the magnetic field
decreases by an order of magnitude because of conservation of
magnetic flux. The expansion of the field corresponds to a height
that is roughly equal to the distance between the chromospheric
sources, so it involves a small fraction of a coronal loop length
and thus the loop is of mostly uniform width in the corona. Field
line tapering is strong in the chromosphere, where changes in
the plasma beta are steeper, but weaker in the corona. In typi-
cal coronal conditions, such as high (T ≈ 1 MK) and uniform
temperature, the pressure scale height is large compared with
the loop length. Therefore, density and pressure can be assumed
to be uniform and constant in the corona. Averaged values can
be constrained from the RTV scaling laws (Rosner et al. 1978)
once the total length of the loop 2L and the uniform heating rate
H0 are given. At the boundaries, the photospheric driver twists
the magnetic field, causing the azimuthal component to increase.
Perfect line-tying to the photospheric boundaries is assumed and
no field line slippage is taken into account. The driver is much
slower than the Alfvén velocity so that the magnetic torsion can
be assumed to be instantaneously transmitted along the whole
tube.

Under these assumptions, it is possible to express the mag-
netic field of a single thread in cylindrical coordinates in terms
of the flux function ψ as a generalized parameter:

B =
1
R

(
−
∂ψ

∂z
,G(ψ),

∂ψ

∂R

)
, (17)

where ψ(R, z) =
∫ R

0 Bz(r′, z)r′ dr′. In equation (17), the azimuthal
magnetic field component is given by a function, G, of the flux
function, ψ. G is related to the radial profile of the twisting veloc-
ity. In the following, R will denote the radius in the corona and r
the radius in the photosphere. Under typical coronal conditions
(i.e. low plasma beta), the force-free condition:

(∇ × B) × B = 0 , (18)

holds. Using Eq. (17), the force-free equation is satisfied by
the Grad-Shafranov equation (Grad and Rubin 1958; Shafranov
1958):

∂2ψ

∂R2 −
1
R
∂ψ

∂R
+
∂2ψ

∂z2 + F(ψ) = 0, (19)

where F = G dG
dψ is a function of ψ. The third term on the left-

hand side can be neglected in the corona, under the assumption
of negligible field line curvature, ∂ψ

∂z ≈ 0 (Browning and Hood

1989; Lothian and Hood 1989). As a first assumption, we con-
sider the azimuthal velocity as linear in z, since the twisting is
equal in magnitude and opposite in direction at the two ends:

vϕ = ω(r)r
z
l
, (20)

where l is a length scale that can be assumed equal to L, the half-
length of the loop, in order that this equation match the angular
speed imposed on the boundaries. From the linearization of the
ideal induction equation (Eq. 3), with η = 0, the azimuthal com-
ponent of the magnetic field in the photosphere is easily linked
to the given twisting angular velocity ω(r) (see Eq. (16)):

∂Bϕ,phs

∂t
=
∂
(
Bz(r)vϕ

)
∂z

=
Bz(r)ω(r)r

l
t = rG. (21)

The vertical component at the photosphere, Bz,phs(r), is given
by the superposition of a background magnetic field Bbk and a
Gaussian function with amplitude B0 and a characteristic width
ς, i.e.:

Bz,phs(r) = Bbk + B0e−
r2

ς2 (22)

and so:

ψ(r,±L) =
1
2

Bbkr2 −
B0σ

2

2

(
e−r2/ς2

− 1
)
. (23)

The magnetostatic equilibrium of a coronal loop in response
to slow twisting of the photospheric footpoints can be investi-
gated in the corona by solving the Grad-Shafranov equation:

Bϕ,coro.(R) =
G
R

(24)

Bz,coro.(R) =
1
R
∂ψ

∂R
. (25)

In this way we account for the flux tube expansion across
the chromosphere just by assuming magnetic flux conserva-
tion throughout the loop volume and force free condition in the
corona. In particular, the volume-integrated magnetic energy of
a single thread in the corona is given by:

Emag. = 2π · 2L ·
∫ yM

0
r

B2
zcoro. + B2

ϕ,coro.

8π
dr. (26)

The volume-integrated kinetic energy can be roughly assessed
by assuming the coronal loop reaches a steady state where the
plasma is moved only by the magnetic field torsion:

Ekin. = 2π
∫ −L

L
dz ·

∫ yM

0
r

1
2
⟨ρ⟩Ω(r)2

( z
L

)2
r2 dr, (27)

where Ω(r) is the angular velocity of the loop in the corona (the
relation Ω(ψ) = ω(ψ) holds) and ⟨ρ⟩ is the averaged coronal
density.

In a cylindrically symmetric flux tube, the angular velocity
produces the axial current density and the azimuthal magnetic
field (see Eq. (16)):

Jz =
1
r
∂

∂r

(
rBϕ(r)

)
=

c
4π

2ω0Bzt
L
×


1 r < rmax.
4rmax.−3r

2rmax.
rmax. < r < 2rmax.

0 r > 2rmax.

,

(28)
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Fig. 2. Solid, blue curve: rate of change of the total energy, given by
the sum of internal, kinetic, magnetic, and gravitational energies of the
system, plotted as functions of time, before the onset of the instability.
Solid, red curve: sum of the total fluxes, energy sources and sinks as
a function of time, before the onset of the instability. Closeness of the
blue and red curves demonstrates approximate energy conservation in
the domain. Dashed, black curve: the dominant flux is the Poynting
flux, which adds to magnetic energy.

according to Eq. (6), (16), (20) and (21). A rough but effective es-
timate of the maximum current density over the time is retrieved
by evaluating the current density at the loop axis:

Jmax. = Jz(r = 0, t) =
c

4π
2Bz(0)ω(0)

L
× t. (29)

As soon as the azimuthal component of the magnetic field
increases linearly with time, magnetic energy should grow
quadratically and the current density linearly.

3.2. Energy equations

The evolution of total energy is determined by the several energy
processes accounted by the numerical simulation. The temporal
evolution of the four energy terms (i.e. magnetic, kinetic, inter-
nal, and gravitational energy) is driven by the energy sources and
sinks (background heating and radiative losses, respectively) and
several energy fluxes at the boundaries of the domain (such as
thermal conduction, Poynting flux, enthalpy flux, and kinetic and
gravitational energy fluxes). In addition, energy transfer terms
may link two different forms of energy. This is the case of Ohmic
heating, converting magnetic energy into heat, or work done by
the Lorentz force, pressure gradient and gravity per unit time,
converting kinetic energy to magnetic, thermal, and gravitational
energy, respectively. The equations governing the evolution of
magnetic, kinetic, internal and gravitational energy, respectively,
are as follows:

Fig. 3. Solid, blue curve: Fourier transform of the work done by pres-
sure forces per unit time, before the onset of the instability. Solid, red
curve: Fourier transform of the work done by gravity force per unit
time, before the onset of the instability. Both curves show a peak around
T ≈ 365 s (identified by eye). Solid, green curve: Fourier transform of
the kinetic energy before the onset of the instability. It shows a peak
around 180 s.

Fig. 4. Solid, blue curve: Total kinetic energy plotted as functions of
time, before the onset of the instability. The last exponential rise shows
the time at which the first thread is disrupted. Dashed, red curve: Theo-
retical estimation of the steady state based on the model described in Eq.
(27). The system (solid, blue curve) is expected to converge in the linear
phase of evolution to that trend as waves are progressively damped.

∂

∂t
B2

8π
+ ∇ ·

[
−

1
4π

B (v · B) (30)

+
B2

4π
v +

η

c
j × B

]
= −

j2

σ
−

v
c
· ( j × B) ,

∂

∂t

(
1
2
ρv2

)
+ ∇ ·

(
1
2
ρv2 v

)
= −v · ∇P +

v
c

( j × B) (31)

+ ρ v · g,
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Fig. 5. Solid, blue curve: Total magnetic energy plotted as a function
of time, before the onset of the instability. Dashed, red curve: Theo-
retical estimate based on the model described in section 3, which grows
through the energy input by photospheric driving.

∂(ρϵ)
∂t
+ ∇ ·

[
γ

γ − 1
P v + ∇ · Fc

]
= v · ∇P − Λ(T )nenH (32)

+
j2

σ
+ H0,

∂(ρgh)
∂t

+ ∇ · (ρgh v) = −ρ v · g. (33)

The sum of the four equations gives the energy equation
(4) discussed in section 2. Terms on the left-hand sides include
rates of change in energy (the derivatives with respect to time)
and energy fluxes (i.e. surface terms, which here appear as di-
vergences). Energy transfer terms, sources and sinks are on the
right-hand sides.

4. Results

4.1. Continued driving: evolution before the instability

The box size is 6.2 Mm in the z direction. The chromosphere
extends for 0.7 Mm on both sides, and the corona (including the
transition region) is in the middle 2L = 5×109 cm (see sec. 2.1).
Here we safely restrict our analysis to the inner domain between
z = ±2 × 109 cm in order to avoid possible undesired contribu-
tions as a result of expected changes in transition region height.
Since boundary conditions are periodic at the side boundaries of
the box, fluxes are only evaluated at the upper and lower bound-
aries of the sub-domain i.e. at z = ±2 × 109 cm.

Initially, the two flux tubes are slowly twisted, at a speed
much slower than the Alfvén speed. As a consequence, the initial
evolution of the magnetic structure is in a quasi steady-state. In
particular, an azimuthal magnetic field component grows almost
linearly with time. The magnetic torsion is transmitted to the
coronal part of the magnetic tube (i.e. at |z| < 2 × 109 cm) after
two hundred seconds, in accordance with the time estimated for
a magnetic signal to cross the chromospheric layer.

Figure 2 shows the rate of change of the total energy, which is
given as the sum of magnetic, kinetic, thermal and gravitational

Fig. 6. Solid, blue curve: Maximum current intensity as a function of
time, before the onset of the instability. Dashed, red curve: Theoretical
estimate based on the model described in section 3.

Fig. 7. Profiles of the apex current intensity along the x-axis (y = 0) at
different times.

energy. Total energy is not constant inside the coronal volume as
a result of incoming fluxes at the chromospheric boundaries of
the domain (such as Poynting flux, kinetic energy flux, enthalpy
flux, gravitational energy flux, and thermal conduction), energy
sources (background heating), and sinks (radiative losses). Total
energy plus incoming/outgoing energy (see Eq. 4) is approxi-
mately conserved throughout the numerical experiment. Among
all the external contributions, the Poynting flux is dominant dur-
ing the build-up of the twisting.

The initial evolution of the system might be seen as the su-
perposition of a long-lasting and steady tube twisting (where
magnetic energy and current density slowly grow as a conse-
quence of the field lines torsion) and a wave-like response to
the induced dynamics (where oscillations of short characteristic
timescales are damped with time). In particular, long period os-
cillation (P ≈ 360 s) are clearly visible in Fig. 2 and in Fig. 3
which shows the pressure force work and the gravity force work
rates as function of time. Those features might be associated with
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Fig. 8. First column. Horizontal cut of the current density across the mid plane at times (from the top) t = 12400 s (onset of first kink instability),
12500 s, 12550 s (second strand’s disruption), and 12600 s. Second column. Horizontal cut of the velocity across the mid plane at the same 4
times. Arrows show the orientation of the velocity field. Color-maps evaluate the intensity of the vertical component of the velocity field. Third
column. Terminal locations (z = L) of sample field lines at the same 4 times. Red field lines (spots) depart from the z = −L footpoint on the left,
(shaded red region), and blue field lines from the the right (blue shaded region). Initially, red and blue field lines are randomly distributed inside
the blue and the red circles, respectively. Subsequent starting locations at the lower boundaries points are determined at later times by tracking
their locations in response to the

photospheric motions.

Brunt–Väisälä oscillations whose characteristic frequency is:

ω =

√
−

g
ρ

∂ρ(h)
∂h

, (34)

where h(z) = 2L
π

cos
(
πz
2L

)
gives the height in a semi-circular loop.

In particular, a frequency of 2.76 × 10−3 s−1 (corresponding to
period of approximately 360 s) matches the theoretical value at
transition region heights, suggesting that the nature of this os-
cillation might be associated with buoyancy movements in the
upper chormospheric layers. Alfvén waves appear in each thread
as azimuthal modes with period of nearly 50 s.

In Fig. 4, the kinetic energy reaches a steady state value
around a time of 6000 seconds and remains there until about
11000 seconds when it exponentially increases as the first kink
instability occurs. The theoretical limit, computed from Eq. (27)
and shown as a red dashed line, agrees with the actual volume-
averaged kinetic energy. Oscillations in kinetic energy have a
period of approximately 180 s (see. Fig. 3) and are the result of
magnetosonic waves. Moreover, the growth of the kinetic energy
during the onset of the ideal instability is, as expected, exponen-
tial with time. This is shown in the internal panel of Fig. 4. In
particular, the slope of the exponential increase matches with

the theoretical value τ = 0.1 × 2L/vA, where vA is the Alfvén
velocity (Van der Linden and Hood 1999; Hood et al. 2009).

Fig. 5 shows that the magnetic energy determined from the
simulation is very close to the prediction of the theoretical model
presented in the previous section. The quadratic increase of the
magnetic energy is determined by the linear growth of the az-
imuthal component of the magnetic field during the twisting.

The vertical component of the current density dominates
over the other ones. It also grows linearly in time as a conse-
quence of the magnetic tube twisting (see Fig. 6). As assumed
in Eq. (29), the maximum current intensity is along the axis of
each flux tube As shown in Fig. 7, the axial current remains pos-
itive around the centres of the strands. On the outer edge, there
is a neutralizing negative current ensuring the net axial current
remains zero.

4.2. Onset of the instability

The first tube becomes unstable after around 12400 s. We esti-
mated the amount of twist, defined asΦ = 2πN (with N the num-
ber of twist turns in the unstable strand), at the time of the insta-
bility. We considered both the maximum tangential photospheric
velocity vϕ and an averaged value ⟨v⟩ =

∫ 2rmax.

0 vϕrdr/
∫ 2rmax.

0 rdr.
In the first case, the Φ ∼ 10 while in the second one it is a factor
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Fig. 9. From top to bottom: average, normalized radiative losses, den-
sity and temperature in the corona, maximum current density, maximum
temperature, and maximum velocity vs. time. Red vertical lines mark
the times of large heating events.

two smaller. In both cases, Φ is of the same order of magni-
tude as previous results such as the Kruskal-Shafranov condition
(ΦKS = 3.3 π) (Priest 2014).

The onset of the first kink instability and the subsequent
MHD cascade can be followed by inspecting the current density
and velocity evolution. For instance, Fig. 8 shows the current
density distribution (first column) and the velocity field (second
column) over the loop mid plane at four different times. In the
first panel, the onset of the first kink instability is shown: the un-
stable flux tube begins to flex as a consequence of the growing
magnetic pressure imbalance. As a consequence of that, a single
current sheet forms at the edge of the loop and the velocity grows
at its sides. Subsequently, in the second panel, the current sheet
fragments in a turbulent way (see the velocity map) into smaller
current sheets and the entire structure expands to interact with
the neighbouring loop. That causes the second loop’s instability.
The third and fourth panels show the evolution of the MHD cas-
cade (i.e. second loop disruption) triggered by the first instabil-
ity. All the time, zones of high plasma velocity on the horizontal
mid-plane spread over regions of high current density. This is
expected since plasma is mostly accelerated by magnetic forces
where magnetic field gradients are higher.

The average temperature peaks 100 s after the onset of the
instability, while average density and radiative losses reach the
maximum value after other 800 s (see first panel of Fig. 9). The
whole, turbulent evolution of the system is harder to follow, but
quantitative information on its dynamics can be obtained from
the maximum current, temperature and velocity evolution shown
in Fig. 9. The three plots show the same qualitative behaviour
with some high peaks around t = 12500 s, during large heating
events corresponding to dissipation of relatively large current
sheets. In particular, the first group of peaks occurs during the
onset of the first kink instability. The second and third ones cor-
respond to the times when the second loop is destabilized and
when it is finally disrupted, respectively. Another peak in the
current intensity occurs at t = 13000 s, followed by a moder-
ate enhancement in the loop temperature and velocity. It is pro-

duced by the formation and subsequent dissipation of a big cur-
rent sheet induced by the continuous driving at the boundaries.

The dissipation of the multi-threaded loop into smaller cur-
rent sheets can be traced by following the magnetic field lines
connectivity over the time. The third column of Fig. 8 shows
the end points of some field lines on the upper boundary plane
z = zmax.. Red points are connected at the opposite side (i.e.
z = −zmax.) to the footpoint of the left. Vice versa, blue dots refer
to field lines connected to the right-hand footpoint. Field lines
are traced from the bottom side of the box and mapped into the
upper one using a second order Runge-Kutta integration scheme.
The location of the starting points at z = −zmax. are updated ac-
cording to the imposed rotation, while the points at the opposite
side are expected to change as the field lines move or change
by reconnection. It is easy to see that the field line connectivity
changes as soon as the MHD cascade takes place and that mag-
netic reconnection has occurred in the meantime. Indeed, during
the instability, field lines from each strand become entangled and
eventually cross the lateral boundaries of the domain. The same
thing is likewise evident in Fig. 10 where field lines in the box
are shown in full-3D rendering. Field lines are computed using a
fourth-order Runge-Kutta scheme and color is attributed depend-
ing on whether the starting points in the photosphere are placed.
As the twisting triggers the kink instability, field lines reconnect
with each other. At the end of the process, some light blue and
purple lines connect different loop footpoints.

The energetics of the numerical experiment reflect the phys-
ical processes that drive the system dynamics. Fig. 11 shows the
evolution of the four energy components i.e. magnetic energy, ki-
netic energy, thermal energy and gravitational energy. The mag-
netic energy dominates over the other components for all the
initial, smooth evolution of the system. As mentioned above,
the main source of energy derives from the Poynting flux (see
Fig. 2). The net effect of thermal conduction, radiative losses
and background heating is negligible provided that the magnetic
field changes are slow compared with the radiative and con-
ductive time scales. In Fig. 12, the sum of the time-integrated
thermal flux, radiative losses and uniform heating is practically
zero while the thermal conduction dominates over the radiative
losses, as expected in typical coronal conditions.

After the onset of the MHD avalanche, the magnetic energy
rapidly drops. The kinetic energy increases exponentially but re-
mains at least one order of magnitude smaller than the magnetic
energy. Most of the magnetic energy gained, through footpoint
driving, is converted into heat. The steep rise in thermal energy
follows the plasma acceleration. In particular, Fig. 13 shows how
the rate of change in magnetic energy matches the instantaneous
Ohmic heating. In turn, it influences the rate of change in heat-
ing.

The several heat pulses released after the multiple magnetic
reconnection events enhance the thermal conductive flux towards
both transition regions (see Fig. 12). The heat flow is then slowed
down in the chromosphere because conduction is less efficient at
cooler temperatures. As a consequence of that, an excess of pres-
sure builds up in the transition region and the top of the chromo-
sphere. This creates the pressure gradient that causes the evapo-
rative up-flow. The plasma expanding upwards, in turn, leads to
an increase in the coronal density inside the magnetic structure.
The sudden growth of the gravitational potential energy traces
this strong mass flow upwards, as shown in Fig. 14. After the
beginning of the MHD avalanche, the gravitational energy in-
creases as a consequence of the chromospheric plasma evapora-
tion in the coronal volume. It supplies gravitational energy flux
at the boundaries while the remaining contribution to the poten-
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Fig. 10. 3D rendering of the magnetic field lines in the box around the two flux tubes at times: (from the left) t = 12400 s (onset of first kink
instability), 12500 s, 12550 s (second loop disruption), and 12600 s. The change in the field line connectivity during the evolution of the MHD
cascade is highlighted by the different colors.

tial energy is given by the work done by the gravity force to
distribute this denser plasma over the entire loop length.

Fig. 15 shows the average vertical thermal flux, radiative
losses, density and temperature as a function of time and height.
The strongest thermal flux (first panel) develops at the times
when each loop is disrupted, i.e., when the temperature gradi-
ent it the greatest. The heat flux propagates toward the upper
and lower transition regions and is stronger in the corona. On
the other hand, radiative losses (second panel) are stronger at
later times when the density (third panel) has increased by chro-
mospheric evaporation. The biggest contribution is localized in
the transition region where the rates exceed the coronal radiative
losses by at least two orders of magnitude. As heating released
during the instability is rapidly spread (in few tens of seconds)
along the tube, temperature (fourth panel) uniformly rises. It then
slowly decreases from 10 MK to 1 MK on a timescale of 1000 s.

4.3. Three-loop simulation

The propagation of the instability described so far is an
avalanche process which can extend to more and more nearby
flux tubes (Hood et al. 2016). To ensure this, we performed
a second numerical experiment with three interacting coronal
loops strands. The initial configuration of the magnetic structure
is shown on the left panel of figure Fig. 16. As in the previ-
ous case, this magnetic structure is embedded in stratified atmo-
sphere including a cold (T ≃ 104K ) chromospheric layer and a
hot and tenuous corona (T ≃ 106K and n ≃ 109cm−3). Eqs. (1)-
(7) summarize the underlying physics driving the evolution of
the system, as discussed in Sec. 2. Similarly to the first case, one
magnetic strand is twisted faster than the other ones at its foot-
points and become kink-unstable. For instance, the right panel
of Fig. 16 shows the propagation of the instability of a central
faster tube to two adjacent tubes. As expected, the most unsta-
ble loop triggers the global dissipation of the magnetic structure
into smaller current sheets. Heating by Ohmic dissipation is lo-
calized inside relatively small regions where the current density
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Fig. 11. Magnetic (purple curve), internal (pink curve), kinetic
(orange curve), and gravitational (yellow curve) energies, as functions
of time. The black curve is the total energy given as the sum of the four
energy terms. The onset of the instability is marked (dotted red verti-
cal line).

Fig. 12. Time-integrated thermal flux (solid black curve), radiative
losses (dashed black curve), and background heating (dotted, black
curve) as functions of time. The solid, red curve is the sum of the three
contributions. The onset of the instability is marked (dotted red verti-
cal line).

is higher. These current sheets develop and spread in a turbulent
way throughout the entire extension of the domain.

5. Discussion and conclusions

This work addresses the energy released impulsively in the
corona under strong magnetic stresses. In particular, we have
shown that MHD avalanches are efficient mechanisms for fast
release of magnetic energy in the solar corona progressively
stored by slow, uniform photospheric motions. We describe a
system consisting of two neighbouring twisted flux tubes. These
interacting flux tubes comprise a stratified atmosphere, includ-
ing chromospheric layers, a thin transition region to the corona,

Fig. 13. Rates of change in magnetic (solid black curve) and internal
(dashed black curve) energies, and Ohmic heating (solid red curve),
as functions of time. Solid, red vertical lines highlight times of large
heating events. The onset of the instability is marked (dashed red ver-
tical line).

Fig. 14. Gravitational energy solid, red curve, time-integrated gravita-
tional energy flux (solid black curve), and work done by gravity (dashed
black curve) as functions of time. The onset of the instability is marked
(dashed red vertical line).

and the associated transition from high-β to low-β regions. The
model includes the effects of thermal conduction and of optically
thin radiation. Rotation of the plasma at the upper and lower
sides of the box applies twisting to the magnetic flux tubes. Since
line-tying of the field lines at the photospheric boundaries is ex-
pected to be maintained over time by high plasma beta values
and a sufficient spatial resolution, each loop can develop high
levels of twist, which increase the azimuthal component of the
magnetic field. Above a certain stress threshold, the structure be-
comes kink-unstable and suddenly relaxes to a new equilibrium
configuration (Hood et al. 2009). In particular, since one strand
is twisted faster than the other, it will become unstable before the
other and trigger the avalanche process that, in turn, will spread
as it affects the neighbouring flux tube. Magnetic reconnection
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Fig. 15. Average vertical thermal flux, radiative losses, plasma density and temperature vs. time (on the horizontal axis) and height (z; on the
vertical axis). Averaging is on the horizontal planes. The region of the domain where the temperature exceeds 104 K (i.e. transition region and
corona) is bounded (magenta lines).

Fig. 16. Left panel: 3D rendering of the initial magnetic field configuration in the proximity of each coronal loop (for the second, three-strands
loop model). Purple field curves will be subjected to a faster twisting driver than the green ones. Right panel: horizontal cut of the Ohmic heating
per unit time and unit volume at the middle of the box at times (from the top) t = 11200 s (onset of first kink instability), 11400 s, 11800 s (second
and third loops’ disruption), 11900 s. In the green filaments the current density exceeds the threshold value for dissipation.

between unstable flux tubes causes bursty and diffuse energy re-
lease (similar to a nanoflare storm) and changes the field con-
nectivity. Moreover, through repeated reconnection events, the
system relaxes towards the minimum energy state. The system
undergoes an initial dynamic phase where the plasma is rapidly
accelerated. The initial helical current sheet progressively frag-

ments in a turbulent way into smaller current sheets which, in
turn, dissipate magnetic energy via Ohmic heating. As soon as
the steep rise in kinetic energy is damped in the corona, the re-
leased heating rapidly increases coronal temperatures and, con-
sequently, the pressure scale height. As a consequence of that,
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the steep rise in temperature is followed by a progressive coronal
density enhancement as a result of chromospheric evaporation.

Results achieved in this paper agree with those found by
Hood et al. (2009), Hood et al. (2016) and Reid et al. (2018), but
go further and extend them. In particular, we demonstrate that
even inside a stratified atmosphere, highly twisted loops with
zero net current undergo the non-linear phase of the kink insta-
bility where reconnection in a single current sheet triggers the
fragmentation of the flux tubes at multiple reconnection sites.
In particular, once the first unstable strand is disrupted, it coa-
lesces with the neighbouring strands inducing an MHD cascade,
as found in uniform coronal atmospheres (Tam et al. 2015; Hood
et al. 2016; Reid et al. 2018).

As shown in Fig. 13, magnetic energy is released in discrete
bursts as stable strands are disrupted and single current sheets
are dissipated. This bursty heating does not show evidence of
reaching a steady state.

Thermal conduction is very effective in spreading heating
along field lines, and this leads to the filamentary structuring in
loop temperature. Also, as shown in Fig. 9, because of thermal
conduction, the temperature grows to about 107 K, much less
than around 108 K found in Hood et al. (2009). Peak tempera-
tures of few 107 K as well as variations in magnetic and internal
energy of 1027 erg agree with those found from microflares ob-
servations (Testa and Reale 2020).

Radiation also has an important effect in the temperature dis-
tribution. Radiative losses are stronger across the transition re-
gion, where the plasma density is higher. As the upper atmo-
sphere is heated, this layer acts as a thermostat for the corona
since it tends to restore the initial coronal temperature. Indeed,
it maintains the temperature gradient that allows heat to flow out
of the corona.

A deep chromospheric layer is important to guarantee line-
tying throughout the whole evolution of the coronal loop. Then,
photospheric motions can slowly twist the magnetic flux tubes
expanding across the chromospheric layer. At the same time, the
chromosphere acts as reservoir of dense plasma which can flow
into the corona, as a consequence of impulsive heating. Mod-
elling the chromospheric evaporation and the resulting increase
of the loop emissivity is fundamental to corroborate the results
through comparison with EUV and X-ray observations of dy-
namic coronal loops.

As shown is section 4.3, the propagation of the instability is
an avalanche process which can extend to more and more nearby
flux tubes (Hood et al. 2016).

In conclusion, this work confirms, and constrains the condi-
tions for, the propagation of a kink instability among a cluster
of flux tubes, including a more complete, stratified loop atmo-
sphere, and important physical effects, in particular the thermal
conduction and the optically thin radiative losses. The avalanche
can trigger the ignition and heating of a large scale coronal loop,
with parameters not far from those inferred from the observa-
tions.

The detection of the small scales involved will be the target
of high-resolution spectroscopic observations of future missions,
such as MUSE (Cheung et al. 2022; De Pontieu et al. 2022) and
SOLAR-C/EUVST (Shimizu et al. 2020). Specific diagnostics
will be the subject of a forthcoming investigation.

Acknowledgements.
GC, PP, and FR acknowledge support from ASI/INAF agreement n. 2022-29-
HH.0 and from italian Ministero dell’Universitá e della Ricerca (MUR).
JR, AWH and GC gratefully acknowledge the financial support of the Sci-
ence and Technology Facilities Council (STFC) through Consolidated Grants
ST/S000402/1 and ST/W001195/1 to the University of St Andrews.

This work made use of the HPC system MEUSA, part of the Sistema Com-
putazionale per l’Astrofisica Numerica (SCAN) of INAF-Osservatorio Astro-
nomico di Palermo.

References
V. Alexiades, G. Amiez, and P.-A. Gremaud. Super-time-stepping acceleration

of explicit schemes for parabolic problems. Communications in numerical
methods in engineering, 12(1):31–42, 1996.

E. Anders and N. Grevesse. Abundances of the elements: Meteoritic and solar.
Geochimica et Cosmochimica acta, 53(1):197–214, 1989.

P. Antolin, P. Pagano, P. Testa, A. Petralia, and F. Reale. Reconnection nanojets
in the solar corona. Nature Astronomy, 5(1):54–62, 2021.

D. S. Balsara and D. S. Spicer. A staggered mesh algorithm using high order
godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic
simulations. Journal of Computational Physics, 149(2):270–292, 1999.

H. Baty and J. Heyvaerts. Electric current concentration and kink instability in
line-tied coronal loops. Astronomy and Astrophysics, v. 308, p. 935-950, 308:
935–950, 1996.

D. Berghmans, F. Auchère, D. M. Long, E. Soubrié, M. Mierla, A. N. Zhukov,
U. Schühle, P. Antolin, L. Harra, S. Parenti, et al. Extreme-uv quiet sun bright-
enings observed by the solar orbiter/eui. Astronomy & Astrophysics, 656:L4,
2021.

G. J. J. Botha, T. D. Arber, and A. W. Hood. Thermal conduction effects on the
kink instability in coronal loops. A&A, 525:A96, 2011.

S. J. Bradshaw and P. J. Cargill. The influence of numerical resolution on coronal
density in hydrodynamic models of impulsive heating. The Astrophysical
Journal, 770(1):12, 2013.

D. H. Brooks, H. P. Warren, and E. Landi. Measurements of Coronal Magnetic
Field Strengths in Solar Active Region Loops. ApJ, 915(1):L24, July 2021. .

P. Browning. Solar coronal heating by relaxation events. Astronomy & Astro-
physics, 400(1):355–367, 2003.

P. Browning and A. Hood. The shape of twisted, line-tied coronal loops. Solar
physics, 124(2):271–288, 1989.

P. Browning and E. Priest. Heating of coronal arcades by magnetic tearing tur-
bulence, using the taylor-heyvaerts hypothesis. Astronomy and Astrophysics,
159:129–141, 1986.

P. Browning, C. Gerrard, A. Hood, R. Kevis, and R. Van der Linden. Heating
the corona by nanoflares: simulations of energy release triggered by a kink
instability. Astronomy & Astrophysics, 485(3):837–848, 2008.

Y. Chen, D. Przybylski, H. Peter, H. Tian, F. Auchère, and D. Berghmans. Tran-
sient small-scale brightenings in the quiet solar corona: A model for campfires
observed with solar orbiter. Astronomy & Astrophysics, 656:L7, 2021.

M. C. Cheung, J. Martínez-Sykora, P. Testa, B. De Pontieu, G. Chintzoglou,
M. Rempel, V. Polito, G. S. Kerr, K. K. Reeves, L. Fletcher, et al. Probing the
physics of the solar atmosphere with the multi-slit solar explorer (muse). ii.
flares and eruptions. The Astrophysical Journal, 926(1):53, 2022.

G. Cozzo, P. Pagano, A. Petralia, and F. Reale. Asymmetric twisting of coronal
loops. Symmetry, 15(3), 2023. ISSN 2073-8994. . URL https://www.
mdpi.com/2073-8994/15/3/627.

B. De Pontieu, P. Testa, J. Martínez-Sykora, P. Antolin, K. Karampelas,
V. Hansteen, M. Rempel, M. C. Cheung, F. Reale, S. Danilovic, et al. Probing
the physics of the solar atmosphere with the multi-slit solar explorer (muse).
i. coronal heating. The Astrophysical Journal, 926(1):52, 2022.

L. Del Zanna, S. Landi, E. Papini, F. Pucci, and M. Velli. The ideal tearing mode:
theory and resistive mhd simulations. In Journal of Physics: Conference Se-
ries, volume 719, page 012016. IOP Publishing, 2016.

A. Gabriel. A magnetic model of the solar transition region. Philosophical
Transactions for the Royal Society of London. Series A, Mathematical and
Physical Sciences, pages 339–352, 1976.

L. Gizon and A. C. Birch. Local helioseismology. lrsp, 2(1):6, 2005.
D. O. Gomez, P. C. Martens, and L. Golub. Normal incidence x-ray telescope

power spectra of x-ray emission from solar active regions. i-observations. ii-
theory. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 405, no. 2, p.
767-781., 405:767–781, 1993.

H. Grad and H. Rubin. Hydromagnetic equilibria and force-free fields. In
Proceedings of the Second. United Nations International Conference on the
Peaceful Uses of Atomic Energy, volume 31, pages 190–197, 1958.

M. Guarrasi, F. Reale, S. Orlando, A. Mignone, and J. Klimchuk. Mhd modeling
of coronal loops: the transition region throat. Astronomy& Astrophysics, 564:
A48, 2014.

J. Heyvaerts and E. R. Priest. Coronal heating by phase-mixed shear alfvén
waves. Astronomy and Astrophysics, vol. 117, no. 2, Jan. 1983, p. 220-234.,
117:220–234, 1983.

A. Hood and E. Priest. The equilibrium of solar coronal magnetic loops. Astron-
omy and Astrophysics, 77:233–251, 1979a.

Article number, page 14 of 16

https://www.mdpi.com/2073-8994/15/3/627
https://www.mdpi.com/2073-8994/15/3/627


G. Cozzo et al.: Coronal energy release by MHD avalanches

A. Hood, P. Browning, and R. Van der Linden. Coronal heating by magnetic
reconnection in loops with zero net current. Astronomy & Astrophysics, 506
(2):913–925, 2009.

A. W. Hood and E. Priest. Kink instability of solar coronal loops as the cause of
solar flares. Solar Physics, 64:303–321, 1979b.

A. W. Hood, P. Cargill, P. Browning, and K. Tam. An mhd avalanche in a multi-
threaded coronal loop. The Astrophysical Journal, 817(1):5, 2016.

R. Ishikawa, J. T. Bueno, T. del Pino Alemán, T. J. Okamoto, D. E. McKenzie,
F. Auchère, R. Kano, D. Song, M. Yoshida, L. A. Rachmeler, et al. Mapping
solar magnetic fields from the photosphere to the base of the corona. Science
Advances, 7(8):eabe8406, 2021.

C. D. Johnston, P. J. Cargill, A. W. Hood, I. De Moortel, S. J. Bradshaw, and
A. C. Vaseekar. Modelling the solar transition region using an adaptive con-
duction method. 635:A168, 2020.

J. A. Klimchuk. On solving the coronal heating problem. Solar Physics, 234(1):
41–77, 2006.

J. A. Klimchuk. Coronal loop models and those annoying observations! arXiv
preprint arXiv:0904.1391, 2009.

J. A. Klimchuk. Key aspects of coronal heating. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 373
(2042):20140256, 2015.

E. Landi and F. Reale. Prominence plasma diagnostics through extreme-
ultraviolet absorption. The Astrophysical Journal, 772(1):71, 2013.
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